Natural Equivariant Dirac Operators

نویسنده

  • KEN RICHARDSON
چکیده

We introduce a new class of natural, explicitly defined, transversally elliptic differential operators over manifolds with compact group actions. Under certain assumptions, the symbols of these operators generate all the possible values of the equivariant index. We also show that the components of the representation-valued equivariant index coincide with those of an elliptic operator constructed from the original data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical harmonic polynomials for higher bundles

We give a method of decomposing bundle-valued polynomials compatible with the action of the Lie group Spin(n), where important tools are Spin(n)-equivariant operators and their spectral decompositions. In particular, the top irreducible component is realized as an intersection of kernels of these operators. 0 Introduction Spherical harmonic polynomials or spherical harmonics are polynomial solu...

متن کامل

A Global View of Equivariant Vector Bundles and Dirac Operators on Some Compact Homogeneous Spaces

In order to facilitate the comparison of Riemannian homogeneous spaces of compact Lie groups with noncommutative geometries (“quantizations”) that approximate them, we develop here the basic facts concerning equivariant vector bundles and Dirac operators over them in a way that uses only global constructions and arguments. Our approach is quite algebraic, using primarily the modules of cross-se...

متن کامل

Quasi-Dirac Operators and Quasi-Fermions

We investigate examples of quasi-spectral triples over two-dimensional commutative sphere, which are obtained by modifying the order-one condition. We find equivariant quasi-Dirac operators and prove that they are in a topologically distinct sector than the standard Dirac operator. MSC 2000: 58B34, 46L87, 34L40

متن کامل

Equivariant spectral triples for SUq(l + 1) and the odd dimensional quantum spheres

We formulate the notion of equivariance of an operator with respect to a covariant representation of a C∗-dynamical system. We then use a combinatorial technique used by the authors earlier in characterizing spectral triples for SUq(2) to investigate equivariant spectral triples for two classes of spaces: the quantum groups SUq(l+1) for l > 1, and the odd dimensional quantum spheres S q of Vaks...

متن کامل

Invariants of Homogeneous Spaces

We derive a formula for the η-invariants of equivariant Dirac operators on quotients of compact Lie groups, and for their infinitesimally equivariant extensions. As an example, we give some computations for spheres. Quotients M = G/H of compact Lie groups provide many important examples of Riemannian manifolds with non-negative sectional curvature. The primary characteristic classes and numbers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008